Synthesis, spectral characterization and antihaemostatic activity of 1,2,4-triazoles incorporating 1,2,4-triazine rings

RAVINDRA R KAMBLE* and BELGUR S SUDHA
Department of Chemistry and Food Science, Yuvaraja's College, University of Mysore, Mysore 570005
e-mail: ravichem1234@rediffmail.com

MS received 16 June 2005; revised 2 January 2006

Abstract

A simple and high yielding method for the integration of a 1,2,4-triazole ring with 1,2,4-tri-azine-5-one ($\mathbf{4 a - j}$) has been developed starting from 3 -arylsydnones ($\mathbf{1 a - d}$). The structures were proved by their spectral data and screened for antihaemostatic activity.

Keywords. Sydnones; 1,3-dipolar cycloaddition; cyclocondensation; N-N-biheterocycles; antihaemostatic activity.

1. Introduction

Sydnones are some of the few heterocycles that have gained importance recently as they readily undergo ring transformation to various heterocycles by 1,3dipolar cycloaddition reaction. The 3-arylsydnones not only offer interesting chemistry but their derivatives possess diverse chemotherapeutic properties. ${ }^{1,2}$ A number of heterocyclic compounds have been synthesized from 3-arylsydnones. ${ }^{3-5}$

The aim of our present work is to extend the 1,3dipolar cycloaddition to synthesise bisheterocycles containing 1,2,4-triazole and 1,2,4-triazine ring systems. 1,2,4-Triazoles have been reported as potential biologically active agents. ${ }^{6-10}$ Triazines find brightening and fibre finishing uses in the textile industry. Triazine derivatives have also been used as chain lengthening agents in polyurethane polymerisation, azodyes, paints, plastic, rubber and also used as fungicides and insecticides. ${ }^{11}$ Zhang et al ${ }^{12}$ have reported the synthesis and antibacterial activity of 4-aryl-3-(1-p-chloro-phenyl-5-methyl-1,2,3-triazol-4-yl)-1,2,4-triazolin-5-thiones.

Prompted by these observations, the $\mathrm{N}-\mathrm{N}$ biheterocycles, viz. 6-methyl-4-(3'-methyl-5'-oxo-1'-aryl-1,5-dihydro-1,2,4-triazol-4'-yl)-3-oxo/thioxo-3,4-di-hydro- $2 \mathrm{H}-1,2,4$-triazin-5-ones ($\mathbf{4} \mathbf{a} \mathbf{-} \mathbf{j}$) have been synthesized.

Normally the haemostatic process plays a delicate balance between keeping blood in the fluid state to

[^0]maintain flow and rapidly forming an occluding plug following vessel injury. Thrombosis occurs because of alteration in this balance. The recent advances in understanding of the haemostatic process have led to design novel antihaemostatic drugs. In the light of this observation, the title compounds were subjected to preliminary antihaemostatic activity.

2. Experimental

2.1 Materials, methods and instruments

Melting points were determined in open capillaries and are uncorrected. IR (KBr) spectra were recorded on Nicolet Impact-410 FT-IR spectrophotometer, NMR spectra $\left(\mathrm{CDCl}_{3}\right)$ on Varian- 300 MHz FT-NMR spectrometer with TMS as internal standard. Purity of the compounds was checked by TLC. Compounds 1a-d were prepared according to the literature method. ${ }^{2}$
2.2a 6-Methyl-4-(3'-methyl-5'-oxo-1'-phenyl-1,5-di-hydro-1,2,4-triazol-4'-yl)-3-oxo-3,4-dihydro-2H-1,2,4-
triazin-5-one (4a): A mixture of 2a (10 mmol) and semicarbohydrazide ($\mathbf{3 k}, \quad 10 \mathrm{mmol})$ in ethanol $(10 \mathrm{ml})$ was refluxed for about 5 h . Pyruvic acid $(10 \mathrm{mmol})$ and glacial acetic acid $(20 \mathrm{ml})$ fused with sodium acetate (2 g) were added and further refluxed for 5 h . The reaction mixture was cooled and poured into ice. The solid obtained was filtered off and recrystallized from ethanol gave colourless needles ($2 \cdot 25 \mathrm{~g}, 75 \%$) of $\mathbf{4 a}$ (cf. table 1).

Table 1. Characterization data of title compounds $\mathbf{4 a} \mathbf{-} \mathbf{j}$.

Compound	Molecular formula	Yield (\%)	m.p. $\left({ }^{\circ} \mathrm{C}\right)$	Calculated (found)		
				C	H	N
4a	$\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{6} \mathrm{O}_{3}$	75	174-5	52.00 (51.96)	4.03 (4.00)	27.99 (28.01)
4b	$\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{6} \mathrm{O}_{3}$	77	143-4	53.50 (53.49)	4.49 (4.52)	26.74 (26.75)
4c	$\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{6} \mathrm{O}_{4}$	84	201-2	50.91 (50.93)	4.27 (4.25)	25.44 (25.42)
4d	$\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~N}_{6} \mathrm{ClO}_{3}$	80	165-5	$46 \cdot 65$ (46.61)	3.31 (3.32)	$25 \cdot 11$ (25.08)
4 e	$\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~N}_{6} \mathrm{BrO}_{3}$	81	138-9	41.18 (41.21)	2.92 (2.89)	22.16 (22.18)
4 f	$\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{6} \mathrm{O}_{2} \mathrm{~S}$	79	192-3	49.36 (49.34)	3.82 (3.79)	26.57 (26.60)
4 g	$\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{6} \mathrm{O}_{2} \mathrm{~S}$	85	154-5	50.90 (50.87)	4.27 (4.23)	25.44 (25.41)
4h	$\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{6} \mathrm{O}_{3} \mathrm{~S}$	88	226-7	48.55 (48.59)	4.07 (4.02)	24.26 (24.28)
4i	$\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~N}_{6} \mathrm{ClO}_{2} \mathrm{~S}$	82	134-5	44.51 (44.48)	$3 \cdot 16$ (3.14)	23.96 (23.95)
4j	$\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~N}_{6} \mathrm{BrO}_{2} \mathrm{~S}$	80	218-9	39.51 (39.50)	$2 \cdot 81$ (2.83)	21.26 (21.24)

IR $v_{\text {max }}(\mathrm{KBr}): 1559,1585,1654,1673,3196 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.98\left(3 \mathrm{H}, s, \mathrm{C}_{6}-\mathrm{CH}_{3}\right), 2.04$ $\left(3 \mathrm{H}, s, \mathrm{C}_{3^{\prime}}-\mathrm{CH}_{3}\right), 6 \cdot 50-6 \cdot 75(5 \mathrm{H}, m, \mathrm{ArH}), 9.0(1 \mathrm{H}$, $b s, \mathrm{NH})$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 16.4\left(\mathrm{C}_{6}-\mathrm{CH}_{3}\right), 18.0\left(\mathrm{C}_{3^{-}}\right.$ $\left.\mathrm{CH}_{3}\right), 119 \cdot 5-135 \cdot 6(\mathrm{ArC}), 151 \cdot 0\left(\mathrm{C}_{5^{\prime}}\right), 153 \cdot 0\left(\mathrm{C}_{6}\right)$, $155 \cdot 0\left(\mathrm{C}_{3^{\prime}}\right)$, 157.0 (C_{3}), 160.0 (C_{5}).
2.2b 6-Methyl-4-(3'-methyl-5'-oxo-1'-p-tolyl-1,5-di-hydro-1,2,4-triazol-4'-yl)-3-oxo-3,4-dihydro-2H-1,2,4 triazin-5-one (4b): IR $\mathrm{v}_{\max }(\mathrm{KBr}): 1544,1585$, 1640, 1668, $3204 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 2 \cdot 12\left(3 \mathrm{H}, s, \mathrm{C}_{6}-\mathrm{CH}_{3}\right), 2 \cdot 20$ $\left(3 \mathrm{H}, s, \mathrm{C}_{3^{\prime}}-\mathrm{CH}_{3}\right), 2 \cdot 28\left(3 \mathrm{H}, s, \mathrm{ArCH}_{3}\right), 6.50(2 \mathrm{H}, d$, $J=8.6 \mathrm{~Hz}, \mathrm{ArH}), 6.74(2 \mathrm{H}, d, J=8.6 \mathrm{~Hz}, \mathrm{ArH})$, 10.05 ($b s, 1 \mathrm{H}, \mathrm{NH}$).
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 15.9\left(\mathrm{C}_{6}-\mathrm{CH}_{3}\right), 17.2\left(\mathrm{C}_{3^{\prime}}\right.$ $\left.\mathrm{CH}_{3}\right), 117 \cdot 4-140.6(\mathrm{ArC}), 147 \cdot 0\left(\mathrm{C}_{5^{\prime}}\right), 149 \cdot 0\left(\mathrm{C}_{6}\right)$, $152 \cdot 0\left(\mathrm{C}_{3^{\prime}}\right), 155 \cdot 0\left(\mathrm{C}_{3}\right), 162 \cdot 0\left(\mathrm{C}_{5}\right)$.
2.2c 6-Methyl-4-(3'-methyl-5'-oxo-1'-p-anisyl-1,5-di-hydro-1,2,4-triazol-4'-yl)-3-oxo-3,4-dihydro-2H-1,2,4 triazin-5-one (4c): IR $v_{\text {max }}(\mathrm{KBr}): 1560,1595,1625$, $1646,3370 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 2 \cdot 10\left(3 \mathrm{H}, s, \mathrm{C}_{6}-\mathrm{CH}_{3}\right), 2 \cdot 15$ $\left(3 \mathrm{H}, s, \mathrm{C}_{3}-\mathrm{CH}_{3}\right), 3 \cdot 50\left(3 \mathrm{H}, s, \mathrm{OCH}_{3}\right), 6 \cdot 77(2 \mathrm{H}, d$, $J=5.9 \mathrm{~Hz}, \mathrm{ArH}), 6.95(2 \mathrm{H}, d, J=5.9 \mathrm{~Hz}, \mathrm{ArH}), 9.8$ ($b s, 1 \mathrm{H}, \mathrm{NH}$).
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 15 \cdot 9\left(\mathrm{C}_{6}-\mathrm{CH}_{3}\right), 17 \cdot 2.0\left(\mathrm{C}_{3^{-}}\right.$ $\left.\mathrm{CH}_{3}\right), 50 \cdot 7\left(\mathrm{OCH}_{3}\right), 117 \cdot 4-140 \cdot 6(\mathrm{ArC}), 147 \cdot 0\left(\mathrm{C}_{5^{\prime}}\right)$, $149 \cdot 0\left(\mathrm{C}_{6}\right), 152 \cdot 0\left(\mathrm{C}_{3}\right), 155 \cdot 0\left(\mathrm{C}_{3}\right), 162 \cdot 0\left(\mathrm{C}_{5}\right)$.
2.2d 6-Methyl-4-(3'-methyl-5'-oxo-1'-p-chlorophenyl-1,5-dihydro-1,2,4-triazol-4'-yl)- 3-oxo-3,4-dihydro$2 H-1,2,4$ triazin- 5 -one ($\mathbf{4 d}$): IR $v_{\text {max }}(\mathrm{KBr}): 1560$, $1600,1610,1667,3185 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 2 \cdot 25\left(3 \mathrm{H}, s, \mathrm{C}_{6}-\mathrm{CH}_{3}\right), 2 \cdot 34$ $\left(3 \mathrm{H}, s, \mathrm{C}_{3^{\prime}} \mathrm{CH}_{3}\right), 6 \cdot 85(2 \mathrm{H}, d, J=9 \cdot 1 \mathrm{~Hz}, \mathrm{ArH}), 7.01$ $(2 \mathrm{H}, d, J=9 \cdot 1 \mathrm{~Hz}, \mathrm{ArH}), 11 \cdot 2(b s, 1 \mathrm{H}, \mathrm{NH})$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 16 \cdot 0\left(\mathrm{C}_{6}-\mathrm{CH}_{3}\right), 17 \cdot 8\left(\mathrm{C}_{3^{-}}\right.$ $\left.\mathrm{CH}_{3}\right), 119 \cdot 2-139.5(\mathrm{ArC}), 150 \cdot 0\left(\mathrm{C}_{5^{\prime}}\right), 151 \cdot 9\left(\mathrm{C}_{6}\right)$, $154 \cdot 0\left(\mathrm{C}_{3^{\prime}}\right), 158 \cdot 0\left(\mathrm{C}_{3}\right), 165 \cdot 0\left(\mathrm{C}_{5}\right)$.
2.2e 6-Methyl-4-(3'-methyl-5'-oxo-1'-p-bromophenyl-1,5-dihydro-1,2,4-triazol-4'-yl)- 3-oxo-3,4-dihydro$2 \mathrm{H}-1,2,4$ triazin- 5 -one ($\mathbf{4 e}$): IR $\mathrm{v}_{\text {max }}(\mathrm{KBr}): 1574$, $1598,1625,1680,3320 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 2 \cdot 40\left(3 \mathrm{H}, s, \mathrm{C}_{6}-\mathrm{CH}_{3}\right), 2 \cdot 58$ $\left(3 \mathrm{H}, s, \mathrm{C}_{3^{\prime}}-\mathrm{CH}_{3}\right), 7 \cdot 12(2 \mathrm{H}, d, J=6 \cdot 8 \mathrm{~Hz}, \mathrm{ArH}), 7 \cdot 25$ $(2 \mathrm{H}, d, J=6.9 \mathrm{~Hz}, \mathrm{ArH}), 11 \cdot 0(b s, 1 \mathrm{H}, \mathrm{NH})$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 17.5\left(\mathrm{C}_{6}-\mathrm{CH}_{3}\right), 19.5\left(\mathrm{C}_{3^{\prime}-}\right.$ $\left.\mathrm{CH}_{3}\right), 118.7-137.4(\mathrm{ArC}), 152.0\left(\mathrm{C}_{5^{\prime}}\right), 154\left(\mathrm{C}_{6}\right)$, $155 \cdot 0\left(\mathrm{C}_{3^{\prime}}\right), 157 \cdot 0\left(\mathrm{C}_{3}\right), 168 \cdot 0\left(\mathrm{C}_{5}\right)$.
2.3f 6-Methyl-4-(3'-methyl-5'-oxo-1'-phenyl-1,5-dihy-dro-1,2,4-triazol-4'-yl)-3-thioxo-3,4-dihydro-2H-1,2,4-triazin-5-one (4f): The compound $\mathbf{4 f}$ was prepared by the reaction of $\mathbf{2 a}$ with thiosemicarbohydrazides 31 followed by the reaction with pyruvic acid as explained in the experimental for $\mathbf{4 a}$ (cf. table 1).

IR $v_{\text {max }}(\mathrm{KBr}): 1310,1565,1591,1620,3295 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1 \cdot 95\left(3 \mathrm{H}, s, \mathrm{C}_{6}-\mathrm{CH}_{3}\right), 2.04$ $\left(3 \mathrm{H}, s, \mathrm{C}_{3^{\prime}}-\mathrm{CH}_{3}\right), 7.00-7.64(5 \mathrm{H}, m, \mathrm{ArH}), 11.70$ ($1 \mathrm{H}, b s, \mathrm{NH}$).
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 15 \cdot 8\left(\mathrm{C}_{6}-\mathrm{CH}_{3}\right), 17 \cdot 4\left(\mathrm{C}_{3^{\prime}-}\right.$ $\left.\mathrm{CH}_{3}\right), 120 \cdot 4-138 \cdot 2(\mathrm{ArC}), 150 \cdot 0\left(\mathrm{C}_{5^{\prime}}\right), 152 \cdot 0\left(\mathrm{C}_{6}\right)$, $155 \cdot 0\left(\mathrm{C}_{3^{\prime}}\right), 163 \cdot 0\left(\mathrm{C}_{5}\right), 183 \cdot 0\left(\mathrm{C}_{3}\right)$.
2.3g 6-Methyl-4-(3'-methyl-5'-oxo-1'-p-tolyl-1,5-dihy-dro-1,2,4-triazol-4'-yl)-3-thioxo-3,4-dihydro-2H-1,2,4-triazin-5-one (4g): IR $v_{\text {max }}(\mathrm{KBr}): 1315,1570,1615$, $1667,3250 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 2 \cdot 00\left(3 \mathrm{H}, s, \mathrm{C}_{6}-\mathrm{CH}_{3}\right), 2 \cdot 10$ $\left(3 \mathrm{H}, s, \mathrm{C}_{3}-\mathrm{CH}_{3}\right), 2 \cdot 35\left(3 \mathrm{H}, s, \mathrm{ArCH}_{3}\right), 7 \cdot 04(2 \mathrm{H}, d$, $J=6.9 \mathrm{~Hz}, \mathrm{ArH}), 7.15(2 \mathrm{H}, d, J=6.9 \mathrm{~Hz}, \mathrm{ArH}), 9.7$ $(1 \mathrm{H}, b s, \mathrm{NH})$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 15 \cdot 8\left(\mathrm{C}_{6}-\mathrm{CH}_{3}\right), 17 \cdot 4\left(\mathrm{C}_{3^{-}}\right.$ $\left.\mathrm{CH}_{3}\right), 120 \cdot 4-138.2(\mathrm{ArC}), 150.0\left(\mathrm{C}_{5^{\prime}}\right), 152 \cdot 0\left(\mathrm{C}_{6}\right)$, $155 \cdot 0\left(\mathrm{C}_{3^{\prime}}\right)$, $163 \cdot 0\left(\mathrm{C}_{5}\right), 183 \cdot 0\left(\mathrm{C}_{3}\right)$.

a; $\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{X}=\mathrm{O}, \mathbf{b} ; \mathrm{R}=p-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}, \mathrm{X}=\mathrm{O}, \mathbf{c} ; \mathrm{R}=p-\mathrm{OCH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}, \mathrm{X}=\mathrm{O}, \mathbf{d} ; \mathrm{R}=p-\mathrm{ClC}_{6} \mathrm{H}_{4}$, $\mathrm{X}=\mathrm{O}, \mathbf{e} ; \mathrm{R}=p-\mathrm{BrC}_{6} \mathrm{H}_{4}, \mathrm{X}=\mathrm{O}, \mathbf{f} ; \mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{X}=\mathrm{S}, \mathbf{g} ; \mathrm{R}=p-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}, \mathrm{X}=\mathrm{S}, \mathbf{h} ; \mathrm{R}=$
$p-\mathrm{OCH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}, \mathrm{X}=\mathrm{S}, \mathbf{i} ; \mathrm{R}=p-\mathrm{ClC}_{6} \mathrm{H}_{4}, \mathrm{X}=\mathrm{S}, \mathbf{j} ; \mathrm{R}=p-\mathrm{BrC}_{6} \mathrm{H}_{4}, \mathrm{X}=\mathrm{S}, \mathbf{k} ; \mathrm{X}=\mathrm{O}, \mathbf{1} ; \mathrm{X}=\mathrm{S}$.

Scheme 1.

2.3 h 6-Methyl-4-(3'-methyl-5'-oxo-1'-p-anisyl-1,5-dihydro-1,2,4-triazol-4'-yl)-3-thioxo-3,4-dihydro-2H-1,2,4-triazin-5-one (4h): IR $\nu_{\max }(\mathrm{KBr}): 1318,1550$, 1605, 1631, $3390 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 2 \cdot 01\left(3 \mathrm{H}, s, \mathrm{C}_{6}-\mathrm{CH}_{3}\right), 2 \cdot 12$ $\left(3 \mathrm{H}, s, \mathrm{C}_{3}-\mathrm{CH}_{3}\right), 3.73\left(3 \mathrm{H}, s, \mathrm{OCH}_{3}\right), 6.75(2 \mathrm{H}, d$, $J=7.4 \mathrm{~Hz}, \mathrm{ArH}), 7.03(2 \mathrm{H}, d, J=7.4 \mathrm{~Hz}, \mathrm{ArH})$, $12 \cdot 0(1 \mathrm{H}, b s, \mathrm{NH})$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 16 \cdot 0\left(\mathrm{C}_{6}-\mathrm{CH}_{3}\right), 19 \cdot 0\left(\mathrm{C}_{3^{\prime}}\right.$ $\left.\mathrm{CH}_{3}\right), 56 \cdot 0\left(\mathrm{OCH}_{3}\right), 114 \cdot 3-140 \cdot 6(\mathrm{ArC}), 144 \cdot 0\left(\mathrm{C}_{5^{\prime}}\right)$, $149 \cdot 0\left(\mathrm{C}_{6}\right), 151 \cdot 0\left(\mathrm{C}_{3^{\prime}}\right), 160 \cdot 0\left(\mathrm{C}_{5}\right), 181 \cdot 0\left(\mathrm{C}_{3}\right)$.
2.3 i 6-Methyl-4-(3'-methyl-5'-oxo-1'-p-chlorophenyl-1,5-dihydro-1,2,4-triazol-4'-yl)-3-thioxo-3,4-dihydro-2H-1,2,4-triazin-5-one (4i): IR $v_{\max }(\mathrm{KBr}): 1305$, 1572, 1600, 1645, $3199 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 2 \cdot 12\left(3 \mathrm{H}, s, \mathrm{C}_{6}-\mathrm{CH}_{3}\right), 2 \cdot 34$ ($3 \mathrm{H}, s, \mathrm{C}_{3^{\prime}}-\mathrm{CH}_{3}$), $7.31(2 \mathrm{H}, d, J=5.2 \mathrm{~Hz}, \mathrm{ArH}), 7.49$ $(2 \mathrm{H}, d, J=5 \cdot 2 \mathrm{~Hz}, \mathrm{ArH}), 11 \cdot 00(1 \mathrm{H}, b s, \mathrm{NH})$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 16.9\left(\mathrm{C}_{6}-\mathrm{CH}_{3}\right), 20.5\left(\mathrm{C}_{3^{\prime}-}\right.$ $\left.\mathrm{CH}_{3}\right), 121 \cdot 8-136 \cdot 3(\mathrm{ArC}), 151 \cdot 0\left(\mathrm{C}_{5^{\prime}}\right), 153.0\left(\mathrm{C}_{6}\right)$, $157 \cdot 0\left(\mathrm{C}_{3^{\prime}}\right), 164 \cdot 0\left(\mathrm{C}_{5}\right), 186 \cdot 0\left(\mathrm{C}_{3}\right)$.
2.3j 6-Methyl-4-(3'-methyl-5'-oxo-1'-p-bromophenyl-1,5-dihydro-1,2,4-triazol-4'-yl)-3-thioxo-3,4-dihydro$2 H-1,2,4$-triazin- 5 -one $(\mathbf{4 j})$: IR $\nu_{\max }(\mathrm{KBr}): 1275$, 1580, 1612, 1640, $3401 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 2 \cdot 19\left(3 \mathrm{H}, s, \mathrm{C}_{6}-\mathrm{CH}_{3}\right), 2 \cdot 35$ $\left(3 \mathrm{H}, s, \mathrm{C}_{3}{ }^{\prime}-\mathrm{CH}_{3}\right), 7.26(2 \mathrm{H}, d, \mathrm{ArH}, J=8.0 \mathrm{~Hz}), 7.40$ $(2 \mathrm{H}, d, J=8.0 \mathrm{~Hz}, \mathrm{ArH}), 11.75(1 \mathrm{H}, b s, \mathrm{NH})$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 19.5\left(\mathrm{C}_{6}-\mathrm{CH}_{3}\right), 21 \cdot 0\left(\mathrm{C}_{3^{\prime}}\right.$ $\left.\mathrm{CH}_{3}\right), 124 \cdot 7-140 \cdot 3(\mathrm{ArC}), 154 \cdot 0\left(\mathrm{C}_{5^{\prime}}\right), 156 \cdot 0\left(\mathrm{C}_{6}\right)$, $160 \cdot 0\left(\mathrm{C}_{3^{\prime}}\right), 165 \cdot 0\left(\mathrm{C}_{5}\right), 188 \cdot 0\left(\mathrm{C}_{3}\right)$.

2.3 Antihaemostatic screening

Tail bleeding time in conscious mice was used to determine antihaemostatic activity of title compounds. ${ }^{13}$ Mice of either sex weighing $20-25 \mathrm{~g}$ were divided into seven groups comprising ten mice in each group. Control group received 0.4 ml of 2% gum acacia. Test compounds were administered in 2% gum acacia to the remaining six groups. Thirty minutes after administration of the test compounds tail-bleeding time was measured and the results are shown in table 1.

3. Results and discussion

3.1 Preparation of title compounds

Synthesis of $\mathrm{N}-\mathrm{N}$ biheterocycles, which is effected sequentially, requires bifunctional precursors, which are not always readily accessible. the 3-arylsydnone 1a-d served as important synthetic precursor for the synthesis of title compounds. ${ }^{2}$ Compound 1a-d was subjected to bromination at $0^{\circ} \mathrm{C}$ followed by heating at $60^{\circ} \mathrm{C}$ underwent 1,3 -dipolar cycloaddition with acetic anhydride to form 3-aryl-5-methyl-2-oxo- Δ^{4} -

1,3,4-oxadiazole ($\mathbf{2 a - d}$). When the compound $\mathbf{2 a - d}$ was refluxed with $\mathbf{3 k}$ for about 5 h whereby transient ring opening, insertion of terminal nitrogen gave intermediates which underwent cyclisation in-situ readily with pyruvic acid in presence of acetic acid fused with sodium acetate to 6-methyl-4-(3'-methyl-5^{\prime}-oxo-1'-aryl-1,5-dihydro-1,2,4-triazol-4'-yl)-3-oxo-3,4-dihydro-2h-1,2,4-triazin-5-one (4a-e). Similarly, the compound $\mathbf{4 f} \mathbf{- j}$ was prepared using $\mathbf{3 1}$ (scheme 1).

The mechanism of the reaction involves the nucleophillic attack of $\mathbf{3}$ to carbonyl carbon atom of 2, which proceeds to the formation of a condensed product that in turn eliminates a molecule of water. The other end of the $\mathbf{3}$ reacts with pyruvic acid followed by intramolecular cyclocondensation gave N N bicyclic product ($\mathbf{4} \mathbf{a}-\mathbf{j}$).

The IR, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of the title compounds were in complete agreement with the assigned structure. In case of IR spectral analyses a broad band due to NH group was appeared in all the title compounds between 3185 and $3401 \mathrm{~cm}^{-1}$. The amide carbonyl functions appeared as sharp band in the range $1591-1680 \mathrm{~cm}^{-1}$. Another band around $1275-1315 \mathrm{~cm}^{-1}$ was appeared in the compounds $\mathbf{4 f}-\mathbf{j}$ due to $\mathrm{C}=\mathrm{S}$ group. ${ }^{1} \mathrm{H}$ NMR spectral analyses of the title compounds exhibited two singlets at $\delta 1.95-$ 2.58 ppm assigned to two methyl groups on C_{6} and

Table 2. Results of antihaemostatic activity of the title compounds 4a-j.

Compound	Dose $\left(\mathrm{mg} \mathrm{kg}^{-1}\right)$	Average bleeding time (in seconds \pm SEM)
$\mathbf{4 a}$	100	$158 \cdot 0 \pm 36 \cdot 5$
$\mathbf{4 b}$	100	$144 \cdot 5 \pm 29 \cdot 6$
$\mathbf{4 c}$	100	$170 \cdot 3 \pm 30 \cdot 5$
$\mathbf{4 d}$	100	$180 \cdot 3 \pm 10 \cdot 3$
$\mathbf{4} \mathbf{e}$	100	$370 \cdot 5 \pm 14 \cdot 6$
$\mathbf{4 f}$	100	$359 \cdot 8 \pm 14 \cdot 3$
$\mathbf{4} \mathbf{g}$	100	$403 \cdot 8 \pm 15 \cdot 6$
$\mathbf{4 h}$	100	$400 \cdot 0 \pm 14 \cdot 3$
$\mathbf{4 i}$	100	$445 \cdot 7 \pm 20 \cdot 5$
$\mathbf{4} \mathbf{j}$	100	$470 \cdot 5 \pm 30 \cdot 2$
$\mathbf{2 \%}$ Gum acacia	$0 \cdot 4 \mathrm{ml}$	$89 \cdot 2 \pm 12 \cdot 8$
(control)	100	$491 \cdot 1 \pm 49 \cdot 5$
Indomethacin (standard)		

$\mathrm{C}_{3^{\prime}}$ carbons. All the title compounds have shown a broad singlet in the range $\delta 9.0-12.0 \mathrm{ppm}$ due to NH. Aromatic protons appeared in the expected range as two doublets ($\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}$). ${ }^{13} \mathrm{C}$ NMR spectral analyses showed a number of signals that are consistent with the number of carbons in the molecule.

3.2 Antihaemostatic activity

Antihaemostasis results (table 2) reveal that the final compounds do not show activity more than or equal to standard drug indomethacin. Only compounds containing the $\mathrm{C}=\mathrm{S}$ group with p-bromophenyl substituent $\mathbf{4 j}(470 \cdot 5)$ and p-chlorophenyl substituent $\mathbf{7 p}$ (445.7) show considerable antihaemostatic activity. The oxo derivative 4a-e exhibits poor antihaemostasis.

Acknowledgements

The authors are grateful to Mukthar Ahmed, Karnatak University, Dharwad for antihaemostatic analyses.

References

1. Earl J C and Mckney A W 1935 J. Chem. Soc. 899
2. Mallur S G and Badami B V 2000 Farmaco 5565
3. Hiremath U S, Yelamaggad C V and Badami B V 1995 Indian J. Heterocycl. Chem. 519
4. Havanur S B and Puranik G S 1985 Indian J. Chem. B24 864
5. Badami B V and Puranik G S 1974 Indian J. Chem. B12 671
6. Hosur M C, Talwar M B, Laddi U V, Bennur R S and Bennur S C 1995 Indian J. Chem. B34 707
7. Hussain M I and Amin M 1986 J. Indian Chem. Soc. 63317
8. Gokce M, Cakir B, Erol K and Sahin M F 2001 Arch. Pharm. 334279
9. Duran A, Dogan H N and Rollas S 2002 Farmaco 57 559
10. Xin-Zhi L I and Zong-Xing S I 2002 Chinese J. Org. Chem. 22178
11. Deohate P P and Berad B N 2005 Indian J. Chem. B44 638
12. Sun X W, Liang H T and Zhang Z Y 1999 Indian J. Chem. B38 679
13. Hornstra G, Christ-Hazelholt E, Haddeman E, Ten H F and Nagsteren D H 1981 Prostaglandins 21727

[^0]: *For correspondence

